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Final Examination, 10 May 1999
SM311O (Spring 1999) (Solutions)

The following formulas may be useful to you:

a)
I
C
v � dr =

Z Z
S
r� v � dA;

b) �(
@v

@t
+rv � v) = �rp+ ��v + �F; div v = 0:

c) � fv = �1

�

@p

@x
+ AV

@2u

@z2
; fu = �1

�

@p

@y
+ AV

@2v

@z2
; 0 = �1

�

@p

@z
� g:

************************************************

1. (a) Let v = hxy; a sin(zy); zpxi where a ia constant. Determine a so that the divergence of
v at the point P = (4;�1; �

6
) vanishes.

Solution: div (hxy; a sin(zy); zpxi = @(xy)
@x

+ @a sin(zy)
@y

+ @z
p
x

@z
=
p
x + y + a z cos(y z).

Evaluating this expression at P = (4;�1; �
6
) and solving the result for a leads to a =

�4
p
3

�
.

(b) v = hy2;�x2; 0i. Find the curl of v. Is this 
ow irrotational anywhere?

Solution: r� hy2;�x2; 0i = h0; 0;�2x� 2yi. The 
ow is irrotational along the plane
x + y = 0.

(c) Prove the identity r�r� = 0 if � is an arbitrary function of x, y, and z.

Solution: r�r� = r� (h@�
@x
; @�
@y
; @�
@z
i). The �rst component of this vector is @2�

@y@z
� @2�

@z@y

which is zero for smooth functions. The other two components are zero similarly.

2. Verify by direct di�erentiation if

(a) u(z) = e2z cos 2z is a solution of u0000 + a2u = 0 for any a.

Solution: u0000(z) = �64e2z cos 2z. So u0000 + a2u = 0 if a2 = 64 or if a = �8.
(b) u(x; y) = sinx cos 2y is an eigenfunction of the Laplace operator � @2

@x2
� @2

@y2
. What is

the eigenvalue?

Solution: Let u(x; y) = sin x cos 2y. Then

�(@
2u

@x2
+
@2u

@y2
) = 5 sinx cos 2y:

So � = 5.
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3. (a) Give a parametrization for the plane that passes through the points (�1; 1; 0), (0; 2; 2),
and (1; 0; 1).

Solution: The equation of the plane is of the form Ax + By + Cz = D. Substituting
the three points (�1; 1; 0), (0; 2; 2) and (1; 0; 1) in the equation we get the following three
equations in terms of A, B, C, and D:

(�) � A +B = D; 2B + 2C = D; A+ C = D:

Adding the �rst and the third equation leads to B + C = 2D which, when compared
with 2B+2C = D (see (*)), results in D = 0. The relavant equations in (*) now become
A = B and C = �B. So x + y � z = 0 is the equation of the plane. (Equivalently, we
can �nd the equation of the plane by constructing two vectors parallel to the plane from
the three given points. In this case, the two vectors are h1; 1; 2i and h1;�2;�1i. Then
the cross product of these vectors, h3; 3;�3i, is normal to the plane.)

Finally, using the normal and the point (1; 0; 1) we get x+ y� z = 0 to be the equation
of the plane, or equivalently, z = x + y. So

r(u; v) = hu; v; u+ vi
is the parametrization of the plane.

(b) Find a unit normal vector to the surface of the upper hemisphere of the Earth at the
point whose longitude and latitude are 60 and 30 degrees, respectively.

Solution: r(u; v) = ha cos u cos v; a sinu cos v; a sin vi; u 2 (0; 2�); v 2 (��
2
; �
2
); is

the parametrization of the upper hemisphere of a sphere of radius a. A normal to this
surface at any point parametrized by u and v is given by ru � rv which equals

N = ru � rv = h�a sin u cos v; a cos u cos v; 0i � h�a cos u sin v;�a sinu sin v; a cos vi =
a2 cos vhcos u sin v; sinu sin v; cos vi:

A unit vector in the direction of N is

hcos u cos v; sinu cos v; sin vi;
which, when evaluated at u = �

3
and v = �

6
, yields

n = h
p
3

4
;
3

4
;
1

2
i:

4. (a) The function �(x; y) = ax2y2 � by2 + x is the potential for a velocity vector �eld v.
Determine the values of a and b so that the velocity of the particle located at (2;�1; 1)
is zero.
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Solution: Because v = r� we have

v = h2axy2 + 1; 2ax2y � 2byi
Substitute (2;�1) into v:

vj(2;�1) = h1 + 4a;�8a+ 2bi
which is 0 if a = �1

4
and b = �1.

(b) The function  (x; y) = ax2 + xy + by2 is the stream function of a velocity �eld v. Find
a and b so that the velocity of the particle located at (1; 1) has magnitude 1

2
.

Solution: Since  = ax2 + xy + by2, then

v = hx+ 2by;�2ax� yi:
Now, the velocity at (1; 1) is vj(1;1) = h1 + 2b;�2a� 1i. After setting the magnitude of
this vector equal to 1

2
we get that (1 + 2b)2 + (1 + 2a)2 = 1

4
.

5. (a) Consider the velocity �eld v = x2zk. Determine the 
ux of this 
uid through the
following two surfaces:

i. a disk of radius 1 in the xy-plane and centered at the origin.
Solution: The 
ux is zero since the integrand is zero on the xy-plane.

ii. a disk of radius 1 in the plane z = 1 and centered at the origin.
Solution: The parametrization of the disk is

r(u; v) = hu cos v; u sin v; 1i:
So ru � rv = uk. Hence

Flux =
Z 1

0

Z 2�

0
u3 cos2 v dvdu =

�

4
:

(b) Compute the 
ux of vorticity of v = y2i through the surface of the upper hemisphere of
a sphere of radius 2 centered at the origin (Hint: Use the Stokes Theorem).

Solution: By the Stokes theorem, the 
ux in question is equal to
R
C v � dr where C is

a circle of radius 2 in the xy-plane. Parametrizing this circle as r(t) = h2 cos t; 2 sin t; 0i,
we see that Z

C
v � dr = �

Z 2�

0
8 sin3 t dt = 0:

6. Consider the following heat conduction problem:

ut = 7uxx; u(0; t) = u(3; t) = 0; u(x; 0) = x(3� x):
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(a) Use separation of variables and �nd the solution to this problem. Clearly indicate the
process of separation of variables and the Fourier Series method used in obtaining this
solution.

Solution: After using separation of variables, whose detail I will not elaborate on here,
we get

u(x; t) =
1X
n=1

Ane
� 7n

2
�
2
t

9 sin
�x

3
:

The coe�cients An are determined from

An =
(u(x; 0); sin n�x

3
)

(sin n�x
3
; sin n�x

3
)
:

Using a calculator, we �nd that

A1 = 2:32211; A2 = 0; A3 = 0:0860041:

(b) Use the �rst nonzero term of the above solution and estimate how long it takes for the
temperature at x = 1:5 to reach 50 per cent of its original value.

Solution: Using only the �rst term of the Fourier Series solution, we have

u(x; t) = 2:32211e�
7�

2
t

9 sin
�x

3
:

Now, u(3
2
; 0) = 9

4
. So our problem reduces to determining t so that

2:32211e�
7�

2
t

9 =
9

8
:

It turns out that t = 0:0944059.

7. Let v = hx2+ y2; 2xyi be the velocity �eld of a 
uid. Compute the acceleration a of this 
ow.
Does a have a potential p? If yes, �nd it.

Solution: a = v � rv = h2(x3 + 3xy2); 2(3x2y + y3)i: The curl of this vector is 0 so the
acceleration vector has a potential �. Since

(��) @�

@x
= 2x3 + 6xy2;

@p

@y
= 6x2y + 2y3;

we start by integrating the �rst equation with respect to x to get

� =
1

2
x4 + 3x2y2 + f(y):

Next, we di�erentiat ethe second equation with respect to y and compare it with the second
equation in (**) to get that f 0(y) = 2y3 or f(y) = 1

2
y4. So � = 1

2
x4 + 3x2y2 + 1

2
y4.
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8. Let 
 stand for the angular velocity of our planet.

(a) Noting that our planet rotates once every 24 hours, compute 
 where 
 = h0; 0;
i.
What are the units of 
?

Solution: 
 = 2�
24�3600 = 0:0000727221 rad=sec.

(b) Use this value of 
 and estimate the values in the centripetal acceleration 
� (
� r)
where r is the position vector to a typical point on the surface of the Earth. Assume
that the radius of the Earth is 6000 kilometers.

Solution: Let r = hx; y; zi. Then

� (
� r) = �h
2x;
2y; 0i

the terms 
2x and 
2y take on the largest values when x or y is 6000 kilometers. With
the value of 
 found previously, 
2x � 0:031731 meters per second per second, much
smaller than 9.8 meters per second per second, the acceleration of gravity.

9. Consider an incompressible 
uid occupying the basin

D = f(x; y; z)j0 � z � Hg:
Let v = hv1; v2; v3i be the velocity �eld of a motion generated in D. Suppose that we have
been able to determine that

v1(x; y; z) = x2y2; v2(x; y; z) = �3x2z;
but have only succeeded in measuring v3 at the bottom of the basin and that this value is

v3(x; y; 0) = x + y:

Determine v3 everywhere in D. (Hint: What does incompressibility meanmathematically?)

Solution: From the equation of incompressibility we have

@v1
@x

+
@v2
@y

+
@v3
@z

= 0

or
@v3
@z

= �@v1
@x

� @v2
@y

:

Substituting the values of v1 and v2 in the above relation yields

@v3
@z

= �2xy2:

Integrating this result with respect to z from 0 to z and using the value of v3 at z = 0 yields

v3 = �2xy2z + x + y:
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10. A 
ow is called geostrophic if the velocity v = hu(x; y); v(x; y)i and the pressure gradient rp
are related by

(� � �) � fv = �1

�

@p

@x
; fu = �1

�

@p

@y
;

where �, a constant, is the density of the 
uid, and f is the coriolis parameter.

(a) Assuming that f is constant, prove that the divergence of v must vanish.

Solution: From the equations of motion we have

u = � 1

�f

@p

@y
; v =

1

�f

@p

@x
:

Now div v = @v1
@x

+ @v2
@y

which is equal to

� 1

�f

@2p

@x@y
+

1

�f

@2p

@y@x
= 0

when p is a smooth function.

(b) Prove that the particle paths of a geostrophic 
ow and its isobars coincide.

Solution: Note that v � rp = � 1
rhof

@p

@y

@p

@x
+ 1

rhof

@p

@x

@p

@y
= 0. So v and rp are orthogonal.

Since rp is orthogonal to isobars, and since v is tangential to particle paths, particle
paths and isobars coincide.

(c) Consider a high pressure �eld in a geostrophic 
ow in the northern hemisphere (where
f > 0). By appealing to the equations in (***) explain whether this high pressure �eld
results in a clockwise or a counterclockwise motion.

Solution: Without loss of generality, assume that the high pressure occurs at the origin
of the coordinate system. Let P be a point in the �rst quadrant. Then rp at P points
toward the origin because 0 is a maximum of p. Then @p

@x
� 0 and @p

@y
� 0 at P (draw

a picture to convince yourself of this). Going back to the geostrophic equations, u � 0
and v � 0 at P which indicates that the motion is clockwise.


